Extracting Causation Knowledge from Natural Language Texts
نویسندگان
چکیده
SEKE is a semantic expectation-based knowledge extraction system for extracting causation knowledge from natural language texts. It is inspired by human behavior on analyzing texts and capturing information with semantic expectations. The framework of SEKE consists of different kinds of generic templates organized in a hierarchical fashion. There are semantic templates, sentence templates, reason templates, and consequence templates. The design of templates is based on the expected semantics of causation knowledge. They are robust and flexible. The semantic template represents the target relation. The sentence templates act as a middle layer to reconcile the semantic templates with natural language texts. With the designed templates, SEKE is able to extract causation knowledge from complex sentences. Another characteristic of SEKE is that it can discover unseen knowledge for reason and consequence by means of pattern discovery. Using simple linguistic information, SEKE can discover extraction pattern from previously extracted causation knowledge and apply the newly generated patterns for knowledge discovery. To demonstrate the adaptability of SEKE for different domains, we investigate the application of SEKE on two domain areas of news articles, namely the Hong Kong stock market movement domain and the global warming domain. Although these two domain areas are completely different, in respect to their expected semantics in reason and consequence, SEKE can effectively handle the natural language texts in these two domains for causation knowledge extraction. © 2005 Wiley Periodicals, Inc.
منابع مشابه
Presenting a method for extracting structured domain-dependent information from Farsi Web pages
Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...
متن کاملExtracting Action Sequences from Texts Based on Deep Reinforcement Learning
Extracting action sequences from texts in natural language is challenging, which requires commonsense inferences based on world knowledge. Although there has been work on extracting action scripts, instructions, navigation actions, etc., they require either the set of candidate actions is provided in advance, or action descriptions are restricted in a specific form, e.g., description templates....
متن کاملA Methodology for Extracting Ontological Knowledge from Spanish Documents
This paper presents a semi-automatic approach for extracting knowledge from natural language texts in Spanish. The knowledge is acquired and learned through the combination of NLP techniques for analyzing text fragments, the ontological technology for representing knowledge and MCRDR, a case-based reasoning methodology. This approach has been applied in the oncology domain and the results of th...
متن کاملHuman Judgements on Causation in French Texts
The annotation of causal relations in natural language texts can lead to a low inter-annotator agreement. A French corpus annotated with causal relations would be helpful for the evaluation of programs that extract causal knowledge, as well as for the study of the expression of causation. As previous theoretical work provides no necessary and sufficient condition that would allow an annotator t...
متن کاملOntologies and Information Extraction
An ontology is a description of conceptual knowledge organized in a computerbased representation while information extraction (IE) is a method for analyzing texts expressing facts in natural language and extracting relevant pieces of information from these texts. IE and ontologies are involved in two main and related tasks, • Ontology is used for Information Extraction: IE needs ontologies as p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002